Cent'anni fa, l'influenza spagnola si abbattè come un maglio sul mondo intero appena uscito dagli orrori della Grande Guerra. In tre (o forse quattro) ondate, la pandemia scatenata dal virus A/H1N1 spazzò via forse 10, forse 50 o forse anche 100 milioni di vite (la storia dell'identificazione, a decenni di distanza, di tale ceppo virale, è ben raccontata nel libro Flu, della giornalista scientifica Gina Kolata, figlia dell'algebrista Ruth Aaronson, e autrice tra l'altro anche di parecchi articoli di tema matematico per il NY Times, nonché di un recente contributo tradotto su Internazionale sulla vera conclusione di una pandemia). Sicuramente la scarsità di informazioni, la difficoltà di comunicare in modo efficiente e l'ignoranza contribuirono a conferire al fenomeno le dimensioni che ha avuto. Oggi, fortunatamente, l'ignoranza è meno diffusa, le comunicazioni sono istantanee e le informazioni non mancano. Quindi siamo stati e saremo in grado di reagire efficacemente ad una pandemia.
Oppure no? Non è che ad essere diventate problematiche sono proprio la facilità di comunicare e la sovrabbondanza di informazioni? Com'è possibile orientarsi correttamente, se le spiegazioni di chi è considerato esperto spaziano, senza soluzione di continuità, dal catastrofismo più apocalittico all'ottimismo più sfrenato? Come facciamo ad esempio a credere al (neo-pensionato) "mister Coronavirus" elvetico, che minimizza il ruolo dei giovani nel contagio, quando ci sono studi che sembrano indicare esattamente il contrario?
Data del 13 maggio la prepubblicazione, da parte di una coppia di ricercatori del'ETH (istituzione alla quale sono parecchio affezionato), di uno studio sull'evoluzione della malattia in Svizzera. Il metodo utilizzato differisce per tre aspetti principali dal semplice SIR: innanzitutto, i compartimenti non sono i tre tradizionali (suscettibili, infetti, rimossi), ma ben 9 (suscettibili, esposti, asintomatici infetti, sintomatici, sintomatici in auto-isolamento, ospedalizzati semplici, in cure intense, rimossi, deceduti), ognuno dei quali suddiviso a sua volta in ragione del tempo trascorso; secondariamente, il modello stratifica la popolazione in base all'età, a intervalli di 5 anni (dal momento che le statistiche sembrano mostrare che il virus colpisce in modo diverso giovani e anziani); inoltre, il modello non si basa su equazioni differenziali ma è discreto, operando quindi direttamente per mezzo di vettori, matrici e probabilità di transizione (anche se il termine catena di Markov non compare mai, immagino si tratti di qualcosa di analogo).
Il preprint è scaricabile qui, dal medRxiv. Ovviamente la stampa ci si è buttata a pesce, anche se, come ammettono onestamente gli autori, l'opera non è ancora stata sottoposta al peer-review. Le conclusioni non sono proprio rassicuranti: gli autori prevedono una seconda ondata, che potrebbe condurre a un numero di decessi in Svizzera molto più alto rispetto alla prima (5000 contro 1600). Le simulazioni mostrano inoltre che il numero di vittime potrebbe essere arginato drasticamente (scendendo ad un migliaio), applicando misure scrupolose di contenimento all'interno degli istituti scolastici (alla faccia di chi dice che i ragazzi non sono un veicolo di trasmissione...).
Nessun commento:
Posta un commento